If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.2+x^2=14x
We move all terms to the left:
0.2+x^2-(14x)=0
a = 1; b = -14; c = +0.2;
Δ = b2-4ac
Δ = -142-4·1·0.2
Δ = 195.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-\sqrt{195.2}}{2*1}=\frac{14-\sqrt{195.2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+\sqrt{195.2}}{2*1}=\frac{14+\sqrt{195.2}}{2} $
| 2x6-3x-1-8= | | 4x+12x-4=4(4x+1 | | -10=n-(-3) | | -2=5(x+1)-4(2x-6) | | 15+30=-5(4x-9) | | 9m+–14m+8m−–2=–13 | | -18+y=-5 | | -7(x+9)=14 | | 1=0.2-0.5x-11 | | x–3=9 | | -2=5(x+1)-4(2x-6 | | 4+x÷3=8 | | -4y-2y=-6 | | 3(x+3)-2x+7=20 | | 99=-3(-1-4n | | –180=15m | | -13+9=-2(x+5) | | 11k+20=9k-20 | | -8c-6=18 | | Q(a)=a²+14a+48 | | 3-v=241 | | 4(4y+1)=20 | | 1/4m=7 | | 30p+12=41 | | 4(y+8)-2y=26 | | 7^2x=64 | | (-3)x5-x=-6 | | y|3+y|6=7|9 | | -6x-2=1 | | 3x+6-8=19 | | 10n+11=-17+8n | | 4(4m)-(m-)=-56 |